Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.411
Filtrar
1.
Biochem Pharmacol ; 213: 115629, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257721

RESUMO

Autoimmune uveitis is a non-infectious, inflammatory intraocular disease that affects the uveal and adjacent tissues. It frequently causes varying degrees of visual loss. Evidence for the strong association between activated γδ T cells and the development of autoimmune uveitis is growing. The innate and adaptive immune response are connected in the early phases by the γδ T cells that contain the γ and δ chains. γδ T cells can identify antigens in a manner that is not constrained by the MHC. When activated by various pathways, γδ T cells can not only secrete pro-inflammatory factors early on (such as IL-17), but they can also promote Th17 cells responses, which ultimately exacerbates autoimmune uveitis. Therefore, we review the mechanisms by which γδ T cells affect autoimmune uveitis in different activation and disease states. Moreover, we also prospect for immunotherapies targeting different γδ T cell-related action pathways, providing a reference for exploring new drug for the treatment of autoimmune uveitis.


Assuntos
Doenças Autoimunes , Imunoterapia , Linfócitos Intraepiteliais , Ativação Linfocitária , Uveíte , Linfócitos Intraepiteliais/efeitos dos fármacos , Linfócitos Intraepiteliais/imunologia , Uveíte/tratamento farmacológico , Uveíte/imunologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Humanos , Animais , Células Th17/imunologia , Interleucina-17/metabolismo , Imunoterapia/métodos
2.
Arthritis Res Ther ; 25(1): 41, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918966

RESUMO

We have read the article entitled "Similarities in clinical course and outcome between juvenile idiopathic arthritis (JIA)-associated and ANA-positive idiopathic anterior uveitis: data from a population-based nationwide study in Germany" by Heiligenhaus et al. While we appreciate the work conducted by the authors, we have several comments we would like to address. First, the follow-up interval of 2 years is too short to conclude that the clinical course between two chronic pathologies is not significantly different. Second, remission status was determined by uveitis inactivity during the 2-year follow-up visit without any mention of flare frequency or length of remission, which is not a reliable measure of uveitis control. Third, ANA-positive idiopathic anterior uveitis is not a classification with a distinct clinical phenotype, and additional reports of serologic investigations would have been helpful.


Assuntos
Artrite Juvenil , Uveíte Anterior , Uveíte , Humanos , Artrite Juvenil/diagnóstico , Artrite Juvenil/epidemiologia , Artrite Juvenil/imunologia , Uveíte Anterior/diagnóstico , Uveíte Anterior/epidemiologia , Uveíte/imunologia , Alemanha/epidemiologia , Progressão da Doença
3.
J Immunol ; 208(5): 1224-1231, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101894

RESUMO

γδ T cells are important immunoregulatory cells in experimental autoimmune uveitis (EAU), and the activation status of γδ T cells determines their disease-enhancing or inhibitory effects. Because γδ T cells can be activated via various pathways, we questioned whether the nature of their activation might impact their function. In this study, we show that γδ T cells activated under different inflammatory conditions differ greatly in their functions. Whereas anti-CD3 treatment activated both IFN-γ+ and IL-17+ γδ T cells, cytokines preferentially activated IL-17+ γδ T cells. γδ T cells continued to express high levels of surface CD73 after exposure to inflammatory cytokines, but they downregulated surface CD73 after exposure to dendritic cells. Although both CD73high and CD73low cells have a disease-enhancing effect, the CD73low γδ T cells are less inhibitory. We also show that polarized activation not only applies to αß T cells and myeloid cells, but also to γδ T cells. After activation under Th17-polarizing conditions, γδ T cells predominantly expressed IL-17 (gdT17), but after activation under Th1 polarizing conditions (gdT1) they mainly expressed IFN-γ. The pro-Th17 activity of γδ T cells was associated with gdT17, but not gdT1. Our results demonstrate that the functional activity of γδ T cells is strikingly modulated by their activation level, as well as the pathway through which they were activated.


Assuntos
Interferon gama/imunologia , Interleucina-17/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Th17/imunologia , Uveíte/imunologia , 5'-Nucleotidase/metabolismo , Animais , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia , Células Th1/imunologia , Uveíte/induzido quimicamente , Uveíte/patologia
4.
ScientificWorldJournal ; 2022: 5032881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197811

RESUMO

INTRODUCTION: There is a scarcity of information available on clinical and laboratory features of adult-onset idiopathic autoimmune uveitis. Therefore, we conducted a single centre descriptive cross-sectional study. Patients and Methods. A chart review of all patients with idiopathic autoimmune uveitis with onset after 18 years of age who were referred to the rheumatology department between January 2017 and December 2018 was performed. Their clinical features, demographic features, and HLA-B genotypes were documented and described. RESULTS: Out of 210 patients referred to rheumatology, 66 were found to have uveitis, and 16 of these had an adult-onset idiopathic autoimmune uveitis. Apart from a slight female preponderance (62.5%), our patients were characterized by a high proportion of panuveitis (4 out of 16, i.e., 25%). There was an increased frequency of occurrence of synechiae (5 out of 16, i.e., 31.3%), retinal vasculitis (4 out of 16, i.e., 25%), optic disc edema (3 out of 16, i.e., 18.8%), and cystoid macular edema (seen in 2 patients, i.e., 12.5%). These features correlated with the anatomical subtypes. Retinal vasculitis and optic disc edema present in three fourth of all panuveitis cases were the most prominent features. The odds of finding HLA-B∗35 in retinal vasculitis were 33 times higher than odds of finding it in idiopathic autoimmune uveitis patients not having retinal vasculitis (OR 33; 95% CI 1.6-698). CONCLUSION: Idiopathic autoimmune uveitis in our patients is characterized by a high frequency of panuveitis and retinal vasculitis, and complications with a probable association between HLA-B∗35 and retinal vasculitis.


Assuntos
Doenças Autoimunes/patologia , Antígenos HLA-B , Uveíte/patologia , Adulto , Doenças Autoimunes/complicações , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/imunologia , Estudos Transversais , Feminino , Antígenos HLA-B/imunologia , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Pan-Uveíte/complicações , Pan-Uveíte/epidemiologia , Pan-Uveíte/imunologia , Pan-Uveíte/patologia , Papiledema/etiologia , Papiledema/patologia , Vasculite Retiniana/etiologia , Vasculite Retiniana/patologia , Estudos Retrospectivos , Centros de Atenção Terciária/estatística & dados numéricos , Uveíte/complicações , Uveíte/epidemiologia , Uveíte/imunologia , Adulto Jovem
5.
Biochem Pharmacol ; 197: 114917, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35041813

RESUMO

Noninfectious (autoimmune and immune-mediated) uveitis is one of the primary diseases leading to blindness in the world. Due to the limitation of current first-line drugs for clinical uveitis, novel drugs and targets against uveitis are urgently needed. Ganciclovir (GCV), an FDA-approved antiviral drug, is often used to treat cytomegalovirus-induced retinitis in clinical patients. Recently, GCV was found to suppress neuroinflammation via targeting STING signaling because the STING pathway plays a pivotal role in autoimmune diseases. However, until now, the effect of GCV on non-infectious uveitis has never been explored. In this work, using the rat experimental autoimmune uveitis (EAU) model, we first found STING to be highly expressed in infiltrating cells (CD68+, CD45+, and CD4+) and retinal glial cells (Iba1+ and GFAP+) of the immunized retina. More importantly, GCV treatment can significantly suppress the initiation and progression of EAU by inhibiting infiltration of Th17 and inflammatory cells into the retina. Mechanistically, we found that GCV could reverse the levels of pro-inflammatory factors (such as IL-1ß) and chemokine-related factors (such as Cxcr3), possibly via targeting the STING pathway. The present results suggest that GCV may be considered as a novel therapeutic strategy against human uveitis.


Assuntos
Doenças Autoimunes/prevenção & controle , Ganciclovir/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Retina/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Uveíte/prevenção & controle , Animais , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Progressão da Doença , Relação Dose-Resposta a Droga , Proteínas do Olho/toxicidade , Ganciclovir/farmacologia , Humanos , Mediadores da Inflamação/imunologia , Masculino , Ratos , Ratos Endogâmicos Lew , Retina/imunologia , Retina/patologia , Proteínas de Ligação ao Retinol/toxicidade , Células Th17/imunologia , Células Th17/patologia , Uveíte/induzido quimicamente , Uveíte/imunologia , Uveíte/patologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-35082168

RESUMO

BACKGROUND AND OBJECTIVES: Progranulin (PGRN) is an important immune regulatory molecule in several immune-mediated diseases. The objective of this study is to investigate the role of PGRN in uveitis and its counterpart, experimental autoimmune uveitis (EAU), and experimental autoimmune encephalomyelitis (EAE). METHODS: Serum PGRN levels in patients with Behcet disease (BD) or Vogt-Koyanagi-Harada (VKH) disease and normal controls were measured by ELISA. EAE and EAU were induced in B10RIII, wild-type, and PGRN-/- mice to evaluate the effect of PGRN on the development of these 2 immune-mediated disease models. The local and systemic immunologic alterations were detected by ELISA, flow cytometry, and real-time PCR. RNA sequencing was performed to identify the hub genes and key signaling pathway. RESULTS: A significantly decreased PGRN expression was observed in patients with active BD and active VKH. Recombinant PGRN significantly reduced EAU severity in association with a decreased frequency of Th17 and Th1 cells. PGRN-/- mice developed an exacerbated EAU and EAE in association with strikingly increased frequency of Th1 and Th17 cells and reduced frequency of regulatory T (Treg) cells. In vitro studies revealed that rPGRN could inhibit IRBP161-180-specific Th1 and Th17 cell response and promote Treg cell expansion. It promoted non-antigen-specific Treg cell polarization from naive CD4+ T cells in association with increased STAT5 phosphorylation. Using RAN sequencing, we identified 5 shared hub genes including Tnf, Il6, Il1b, Cxcl2, and Ccl2 and the most significantly enriched MAPK and tumor necrosis factor signaling pathway in PGRN-/- EAU mice. The aggravated EAE activity in PGRN-/- mice was associated with a skew from M2 to M1 macrophages. DISCUSSION: Our results collectively reveal an important protective role of PGRN in EAU and EAE. These studies suggest that PGRN could serve as an immunoregulatory target in the study of prevention and treatment for the Th1/Th17-mediated diseases.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Síndrome de Behçet , Encefalomielite Autoimune Experimental , Macrófagos , Progranulinas/sangue , Linfócitos T Reguladores , Células Th1 , Células Th17 , Uveíte , Animais , Doenças Autoimunes do Sistema Nervoso/sangue , Doenças Autoimunes do Sistema Nervoso/imunologia , Síndrome de Behçet/sangue , Síndrome de Behçet/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Uveíte/sangue , Uveíte/imunologia , Síndrome Uveomeningoencefálica/sangue , Síndrome Uveomeningoencefálica/imunologia
7.
FASEB J ; 36(1): e21995, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34874579

RESUMO

While the eye is considered an immune privileged site, its privilege is abrogated when immune cells are recruited from the surrounding vasculature in response to trauma, infection, aging, and autoimmune diseases like uveitis. Here, we investigate whether in uveitis immune cells become associated with the lens capsule and compromise its privilege in studies of C57BL/6J mice with experimental autoimmune uveitis. These studies show that at D14, the peak of uveitis in these mice, T cells, macrophages, and Ly6G/Ly6C+ immune cells associate with the lens basement membrane capsule, burrow into the capsule matrix, and remain integrated with the capsule as immune resolution is occurring at D26. 3D surface rendering image analytics of confocal z-stacks and scanning electron microscopy imaging of the lens surface show the degradation of the lens capsule as these lens-associated immune cells integrate with and invade the lens capsule, with a subset infiltrating both epithelial and fiber cell regions of lens tissue, abrogating its immune privilege. Those immune cells that remain on the surface often become entwined with a fibrillar net-like structure. Immune cell invasion of the lens capsule in uveitis has not been described previously and may play a role in induction of lens and other eye pathologies associated with autoimmunity.


Assuntos
Doenças Autoimunes/imunologia , Movimento Celular/imunologia , Matriz Extracelular/imunologia , Cristalino/imunologia , Macrófagos/imunologia , Uveíte/imunologia , Animais , Doenças Autoimunes/patologia , Cristalino/patologia , Macrófagos/patologia , Camundongos , Uveíte/patologia
8.
J Allergy Clin Immunol ; 149(1): 176-188.e7, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175136

RESUMO

BACKGROUND: Blau syndrome (BS) is an autoinflammatory disease associated with mutations in nucleotide-binding oligomerization domain 2. Although treatments with anti-TNF agents have been reported to be effective, the underlying molecular mechanisms remain unclear. OBJECTIVE: We aimed to elucidate the mechanisms of autoinflammation in patients with BS and to clarify how anti-TNF treatment controls the disease phenotype at the cellular level in clinical samples. METHODS: Macrophages were differentiated from monocytes of 7 BS patients, and global transcriptional profiles of 5 patients were analyzed with or without IFN-γ stimulation. Macrophages were also generated from BS-specific induced pluripotent stem cells (iPSCs), and their transcriptome was examined for comparison. RESULTS: Aberrant inflammatory responses were observed upon IFN-γ stimulation in macrophages from untreated BS patients, but not in those from patients treated with anti-TNF. iPSC-derived macrophages carrying a disease-associated mutation also showed IFN-γ-dependent accelerated inflammatory responses. Comparisons of peripheral blood- and iPSC-derived macrophages revealed the upregulation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) targets in unstimulated macrophages as a common feature. CONCLUSIONS: IFN-γ stimulation is one of the key signals driving aberrant inflammatory responses in BS-associated macrophages. However, long-term treatment with anti-TNF agents ameliorates such abnormalities even in the presence of IFN-γ stimulation. Our data thus suggest that preexposure to TNF or functionally similar cytokines inducing NF-κB-driven proinflammatory signaling during macrophage development is a prerequisite for accelerated inflammatory responses upon IFN-γ stimulation in BS.


Assuntos
Artrite/imunologia , Interferon gama/imunologia , Macrófagos/imunologia , Sarcoidose/imunologia , Sinovite/imunologia , Inibidores do Fator de Necrose Tumoral/farmacologia , Uveíte/imunologia , Adulto , Artrite/tratamento farmacológico , Artrite/genética , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , NF-kappa B/imunologia , Sarcoidose/tratamento farmacológico , Sarcoidose/genética , Sinovite/tratamento farmacológico , Sinovite/genética , Transcriptoma , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Uveíte/tratamento farmacológico , Uveíte/genética , Adulto Jovem
9.
Ocul Immunol Inflamm ; 30(7-8): 1890-1900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34468261

RESUMO

PURPOSE: To explore the effect of chronic unpredictable mild stress (CUMS) on the immune response involved in rats with experimental autoimmune uveitis (EAU). METHODS: Lewis rats were randomly divided into control, EAU, CUMS, and EAU+CUMS groups and received relevant treatments. On days 7, 11, 14, 21 and 28, frequencies of Th17 and Treg cells and the related cytokines were analyzed. RESULTS: The intraocular inflammation of EAU rats peaked between days 11 and 13, while the severity of inflammation of the rats in EAU+CUMS group fluctuated between 11 and 15 days. Both frequencies of Th17, Treg cells and the related cytokines exhibited a significant difference between the two groups on days 11 and 14. CONCLUSION: CUMS may protect against the possible harmful effects of immune disorder in rats with EAU through suppressing the immune disorder of T lymphocyte and the related cytokine responses.


Assuntos
Doenças Autoimunes , Linfócitos T Reguladores , Células Th17 , Uveíte , Animais , Ratos , Ratos Endogâmicos Lew , Uveíte/imunologia , Citocinas
10.
Front Immunol ; 12: 742154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867964

RESUMO

Regulatory immunity that provides resistance to relapse emerges during resolution of experimental autoimmune uveitis (EAU). This post-EAU regulatory immunity requires a melanocortin 5 receptor (MC5r)-dependent suppressor antigen presenting cell (APC), as shown using a MC5r single knock-out mouse. The MC5r-dependent APC activates an adenosine 2A receptor (A2Ar)-dependent regulatory Treg cell, as shown using an A2Ar single knock-out mouse. Unexpectedly, when MC5r-/- post-EAU APC were used to activate A2Ar-/- post-EAU T cells the combination of cells significantly suppressed EAU, when transferred to EAU mice. In contrast, transfer of the reciprocal activation scheme did not suppress EAU. In order to explain this finding, MC5r-/-A2Ar-/- double knock-out (DKO) mice were bred. Naïve DKO mice had no differences in the APC populations, or inflammatory T cell subsets, but did have significantly more Treg cells. When we examined the number of CD4 and CD8 T cell subsets, we found significantly fewer CD8 T cells in the DKO mice compared to WT and both single knock-out mice. DKO mice also had significantly reduced EAU severity and accelerated resolution. In order to determine if the CD8 T cell deficiency contributed to the resistance to EAU in the DKO mice, we transferred naïve CD8 T cells from WT mice, that were immunized for EAU. Susceptibility to EAU was restored in DKO mice that received a CD8 T cell transfer. While the mechanism that contributed to the CD8 T cell deficiency in the DKO mice remains to be determined, these observations indicate an importance of CD8 T cells in the initiation of EAU. The involvement of CD4 and CD8 T cells suggests that both class I and class II antigen presentation can trigger an autoimmune response, suggesting a much wider range of antigens may trigger autoimmune disease.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptor A2A de Adenosina/imunologia , Receptores de Melanocortina/imunologia , Uveíte/imunologia , Animais , Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor A2A de Adenosina/deficiência , Receptores de Melanocortina/deficiência
11.
Invest Ophthalmol Vis Sci ; 62(15): 31, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967854

RESUMO

Purpose: The purpose of this study was to elucidate the effects of interleukin (IL)-38 on experimental autoimmune uveitis (EAU) and its underlying mechanisms. Methods: Mice with EAU were treated with IL-38, and the retinas and cervical draining lymph nodes (CDLNs) were analyzed by flow cytometry. Single-cell RNA sequencing (scRNA-seq) was conducted to analyze the immune cell profiles of CDLNs from normal, EAU, and IL-38-treated mice. Results: Administration of IL-38 attenuated EAU symptoms and reduced the proportion of T helper 17 (Th17) and T helper 1 (Th1) cells in the retinas and CDLNs. In scRNA-seq analysis, IL-38 downregulated the IL-17 signaling pathway and reduced the expression of Th17 cell pathogenicity-related genes (Csf2 and Il23r), findings which were also confirmed by flow cytometry. In vitro, IL-38 reduced the granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation function of IL-23 and inhibited IL-23R expression in Th17 cells. Moreover, when co-cultured with Th17 cells, IL-38 prevented IL-23 production in antigen-presenting cells (APCs). Conclusions: Our data demonstrate the therapeutic effect of IL-38 on EAU, and suggest that the effect of IL-38 may be caused by dampening of the GM-CSF/IL-23R/IL-23 feedback loop between Th17 cells and APCs.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Sistema Imunitário/fisiologia , Interleucinas/uso terapêutico , Células Th17/imunologia , Uveíte/tratamento farmacológico , Transferência Adotiva , Animais , Células Apresentadoras de Antígenos/imunologia , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Técnicas de Cocultura , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Injeções Intravenosas , Interleucina-23/metabolismo , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pescoço , Proteínas Recombinantes/uso terapêutico , Retina/imunologia , Análise de Sequência de RNA , Análise de Célula Única , Linfócitos T/imunologia , Células Th1/imunologia , Uveíte/induzido quimicamente , Uveíte/imunologia
12.
Front Immunol ; 12: 758554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950136

RESUMO

Autoimmune uveitis is characterized by immune disorders of the eyes and the whole body and is often recurrent in young adults, but its pathogenesis is still unclear. IL-35 is an essential regulatory factor in many autoimmune diseases, which is produced by Breg cells and can induce Breg cells to regulate the immune response. The relationship between the expression and gene polymorphism of IL-35 and the immune status of patients with autoimmune uveitis has not been reported. The peripheral blood of the subjects was collected from patients with Behçet's Disease (BD) and those with Vogt-Koyanagi-Harada (VKH) syndrome. The percentage of immune cell subsets including B cells, DC, and T cells, and the expression of IL-35 in serum of these two kinds of disease were analyzed. And then, the associations between seven IL-35 single nucleotide polymorphism (SNP) sites and disease susceptibility, the immune status, the clinical characteristics, and the serum IL-35 levels were analyzed. Our results showed that the percentage of Breg cells was significantly decreased in the blood of patients with VKH syndrome compared to that of healthy controls. The levels of IL-35 in the serum of patients with VKH syndrome or BD patients were not changed significantly, compared to that of healthy controls. Furthermore, the associations between two subunits of IL-35 (IL-12p35 and EBI3) and BD or VKH patients were analyzed. We found that there was an association between the EBI3 rs428253 and the occurrence of BD. There was an association between the IL-12p35 rs2243131 and the low level of Breg cell of VKH patients. In addition, there were associations between the polymorphisms of EBI3 rs4740 and the occurrence of headache and tinnitus of VKH patients, respectively. And the genotype frequency of IL-12p35 rs2243115 was related to the concentration of serum IL-35 in patients with VKH syndrome. Thus, the specific SNP sites change of IL-35 were correlated to the immune disorders in uveitis. And they may also play a guiding role in the occurrence of clinical symptoms in patients with uveitis, especially for VKH syndrome.


Assuntos
Síndrome de Behçet/imunologia , Interleucinas/imunologia , Polimorfismo de Nucleotídeo Único/imunologia , Uveíte/imunologia , Povo Asiático , Síndrome de Behçet/genética , Humanos , Interleucinas/genética , Polimorfismo de Nucleotídeo Único/genética , Uveíte/genética
13.
Front Immunol ; 12: 756423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733288

RESUMO

Kallistatin or kallikrein-binding protein (KBP) has been reported to regulate angiogenesis, inflammation and tumor progression. Autoimmune uveitis is a common, sight-threatening inflammatory intraocular disease. However, the roles of kallistatin in autoimmunity and autoreactive T cells are poorly investigated. Compared to non-uveitis controls, we found that plasma levels of kallistatin were significantly upregulated in patients with Vogt-Koyanagi-Harada (VKH) disease, one of the non-infectious uveitis. Using an experimental autoimmune uveitis (EAU) model induced by human interphotoreceptor retinoid-binding protein peptide 651-670 (hIRBP651-670), we examined the effects of kallistatin on the pathogenesis of autoimmune diseases. Compared to wild type (WT) mice, kallistatin transgenic (KS) mice developed severe uveitis with dominant Th17 infiltrates in the eye. In addition, the proliferative antigen-specific T cells isolated from KS EAU mice produced increased levels of IL-17A, but not IFN-γ or IL-10 cytokines. Moreover, splenic CD4+ T cells from naïve KS mice expressed higher levels of Il17a mRNA compared to WT naïve mice. Under Th17 polarization conditions, KS mice exhibited enhanced differentiation of naïve CD4+ T cells into Th17 cells compared to WT controls. Together, our results indicate that kallistatin promotes Th17 differentiation and is a key regulator of aggravating autoinflammation in EAU. Targeting kallistatin might be a potential to treat autoimmune disease.


Assuntos
Doenças Autoimunes/imunologia , Serpinas/imunologia , Células Th17/imunologia , Uveíte/imunologia , Animais , Doenças Autoimunes/metabolismo , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Serpinas/metabolismo , Uveíte/metabolismo , Síndrome Uveomeningoencefálica/imunologia
14.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782464

RESUMO

Regulatory B cells (Breg cells) that secrete IL-10 or IL-35 (i35-Breg) play key roles in regulating immunity in tumor microenvironment or during autoimmune and infectious diseases. Thus, loss of Breg function is implicated in development of autoimmune diseases while aberrant elevation of Breg prevents sterilizing immunity, exacerbates infectious diseases, and promotes cancer metastasis. Breg cells identified thus far are largely antigen-specific and derive mainly from B2-lymphocyte lineage. Here, we describe an innate-like IL-27-producing natural regulatory B-1a cell (i27-Breg) in peritoneal cavity and human umbilical cord blood. i27-Bregs accumulate in CNS and lymphoid tissues during neuroinflammation and confers protection against CNS autoimmune disease. i27-Breg immunotherapy ameliorated encephalomyelitis and uveitis through up-regulation of inhibitory receptors (Lag3, PD-1), suppression of Th17/Th1 responses, and propagating inhibitory signals that convert conventional B cells to regulatory lymphocytes that secrete IL-10 and/or IL-35 in eye, brain, or spinal cord. Furthermore, i27-Breg proliferates in vivo and sustains IL-27 secretion in CNS and lymphoid tissues, a therapeutic advantage over administering biologics (IL-10, IL-35) that are rapidly cleared in vivo. Mutant mice lacking irf4 in B cells exhibit exaggerated increase of i27-Bregs with few i35-Bregs, while mice with loss of irf8 in B cells have abundance of i35-Bregs but defective in generating i27-Bregs, identifying IRF8/BATF and IRF4/BATF axis in skewing B cell differentiation toward i27-Breg and i35-Breg developmental programs, respectively. Consistent with its developmental origin, disease suppression by innate i27-Bregs is neither antigen-specific nor disease-specific, suggesting that i27-Breg would be effective immunotherapy for a wide spectrum of autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Doenças do Sistema Nervoso Central/imunologia , Interleucina-27/metabolismo , Doenças Neuroinflamatórias/imunologia , Animais , Linfócitos B Reguladores/imunologia , Diferenciação Celular , Encefalite , Fatores Reguladores de Interferon , Interleucina-10 , Camundongos , Uveíte/imunologia
16.
Front Immunol ; 12: 724609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603297

RESUMO

STAT3 activates transcription of genes that regulate cell growth, differentiation, and survival of mammalian cells. Genetic deletion of Stat3 in T cells has been shown to abrogate Th17 differentiation, suggesting that STAT3 is a potential therapeutic target for Th17-mediated diseases. However, a major impediment to therapeutic targeting of intracellular proteins such as STAT3 is the lack of efficient methods for delivering STAT3 inhibitors into cells. In this study, we developed a novel antibody (SBT-100) comprised of the variable (V) region of a STAT3-specific heavy chain molecule and demonstrate that this 15 kDa STAT3-specific nanobody enters human and mouse cells, and induced suppression of STAT3 activation and lymphocyte proliferation in a concentration-dependent manner. To investigate whether SBT-100 would be effective in suppressing inflammation in vivo, we induced experimental autoimmune uveitis (EAU) in C57BL/6J mice by active immunization with peptide from the ocular autoantigen, interphotoreceptor retinoid binding protein (IRBP651-670). Analysis of the retina by fundoscopy, histological examination, or optical coherence tomography showed that treatment of the mice with SBT-100 suppressed uveitis by inhibiting expansion of pathogenic Th17 cells that mediate EAU. Electroretinographic (ERG) recordings of dark and light adapted a- and b-waves showed that SBT-100 treatment rescued mice from developing significant visual impairment observed in untreated EAU mice. Adoptive transfer of activated IRBP-specific T cells from untreated EAU mice induced EAU, while EAU was significantly attenuated in mice that received IRBP-specific T cells from SBT-100 treated mice. Taken together, these results demonstrate efficacy of SBT-100 in mice and suggests its therapeutic potential for human autoimmune diseases.


Assuntos
Doenças Autoimunes/prevenção & controle , Fator de Transcrição STAT3/imunologia , Células Th17/imunologia , Uveíte/prevenção & controle , Transferência Adotiva , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Doenças Autoimunes/imunologia , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho/imunologia , Proteínas do Olho/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação ao Retinol/imunologia , Proteínas de Ligação ao Retinol/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Th17/patologia , Uveíte/imunologia
17.
Front Immunol ; 12: 739605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484247

RESUMO

Glucocorticoids (GCs) are widely used immunosuppressive drugs for autoimmune diseases, although considerable gaps exist between current knowledge of the mechanisms of GCs and their conclusive immune-regulatory effects. Here we generated a single-cell transcriptional immune cell atlas based on prednisone-treated or untreated experimental autoimmune uveitis (EAU) mice. Immune cells were globally activated in EAU, and prednisone partially reversed this effect in terms of cell composition, gene expression, transcription factor regulation, and cell-cell communication. Prednisone exerted considerable rescue effects on T and B cells and increased the proportion of neutrophils. Besides commonly regulated transcriptional factors (Fosb, Jun, Jund), several genes were only regulated in certain cell types (e.g. Cxcr4 and Bhlhe40 in T cells), suggesting cell-type-dependent immunosuppressive properties of GC. These findings provide new insights into the mechanisms behind the properties and cell-specific effects of GCs and can potentially benefit immunoregulatory therapy development.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Linfócitos B/efeitos dos fármacos , Glucocorticoides/farmacologia , Linfonodos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Prednisona/farmacologia , Linfócitos T/efeitos dos fármacos , Transcriptoma , Uveíte/tratamento farmacológico , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Neutrófilos/enzimologia , Neutrófilos/metabolismo , RNA-Seq , Análise de Célula Única , Linfócitos T/imunologia , Linfócitos T/metabolismo , Uveíte/genética , Uveíte/imunologia , Uveíte/metabolismo
18.
Inflammopharmacology ; 29(5): 1389-1398, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34518966

RESUMO

Autoimmune uveitis is an inflammatory disease of the eye and is one of the major causes of blindness worldwide. Experimental autoimmune uveoretinitis (EAU) constitutes an animal disease model of human endogenous uveitis. In our study, we investigated the immunomodulatory effect of dimethyl fumarate (DMF) using bovine retinal extract-induced uveitis in a Female Wistar rats. To evaluate the in vivo efficacy, Female Wistar rats were divided into seven experimental groups: control group (n = 5), consisting of non-immunized animals; Uveoretinitis (n = 5), and DMF/Uveoretinitis groups (n = 15), which received a subcutaneous injection of bovine retinal extract emulsified in complete Freund's adjuvant; MC group (n = 5), treated by daily intragastric administration of methylcellulose 0.08% in tap water; DMF group, consisting of control positive group, rats received daily oral gavage administration of 500 µL of dimethyl fumarate at 100 mg/Kg dissolved in 0.08% methylcellulose in tap water (n = 5). On day 14 post immunization, the rats were then euthanized and associated indications were investigated to evaluate the therapeutic efficacy. Nitric oxide (NO) and TNF-α were assessed in plasma. Meanwhile, eyes were collected for histological and immunohistochemical studies. The retinal expression of iNOS, CD68, CD20, CD25, CD4, and CD8 was examined. Interestingly, DMF enhanced a significant reduction of NO and TNF-α production in the treated group. This effect was strongly related to the histological structure of eyes improvement. In the same context, a significant decrease of iNOS, CD68, and CD20 expression and CD25 increase expression were reported in retinal tissue of DMF/Uveoretinitis group in comparison to the immunized group. Collectively, our results indicate that DMF treatment has a beneficial effect in experimental autoimmune uveoretinitis and could constitute a good candidate for monitoring an ocular inflammatory diseases.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Fumarato de Dimetilo/farmacologia , Agentes de Imunomodulação/farmacologia , Uveíte/tratamento farmacológico , Animais , Doenças Autoimunes/imunologia , Bovinos , Modelos Animais de Doenças , Feminino , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Uveíte/imunologia
19.
Cells ; 10(8)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34440839

RESUMO

Uncontrolled inflammation is associated with neurodegenerative conditions in central nervous system tissues, including the retina and brain. We previously found that the neural retina (NR) plays an important role in retinal immunity. Tumor necrosis factor Receptor-Associated Factor 3 (TRAF3) is a known immune regulator expressed in the retina; however, whether TRAF3 regulates retinal immunity is unknown. We have generated the first conditional NR-Traf3 knockout mouse model (Chx10-Cre/Traf3f/f) to enable studies of neuronal TRAF3 function. Here, we evaluated NR-Traf3 depletion effects on whole retinal TRAF3 protein expression, visual acuity, and retinal structure and function. Additionally, to determine if NR-Traf3 plays a role in retinal immune regulation, we used flow cytometry to assess immune cell infiltration following acute local lipopolysaccharide (LPS) administration. Our results show that TRAF3 protein is highly expressed in the NR and establish that NR-Traf3 depletion does not affect basal retinal structure or function. Importantly, NR-Traf3 promoted LPS-stimulated retinal immune infiltration. Thus, our findings propose NR-Traf3 as a positive regulator of retinal immunity. Further, the NR-Traf3 mouse provides a tool for investigations of neuronal TRAF3 as a novel potential target for therapeutic interventions aimed at suppressing retinal inflammatory disease and may also inform treatment approaches for inflammatory neurodegenerative brain conditions.


Assuntos
Proteínas de Homeodomínio/genética , Neurônios/metabolismo , Retina/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Fatores de Transcrição/genética , Animais , Modelos Animais de Doenças , Eletrorretinografia , Imunidade/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Neurônios/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Retina/fisiologia , Fator 3 Associado a Receptor de TNF/deficiência , Fator 3 Associado a Receptor de TNF/metabolismo , Fatores de Transcrição/deficiência , Uveíte/etiologia , Uveíte/imunologia , Uveíte/metabolismo , Acuidade Visual
20.
Front Immunol ; 12: 601619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385998

RESUMO

As one of the leading causes of blindness worldwide, uveitis is an important disease. The exact pathogenesis of autoimmune uveitis is not entirely elucidated to date. Equine recurrent uveitis (ERU) represents the only spontaneous animal model for autoimmune uveitis in humans. As the metabolism of immune cells is an emerging field in research and gains more and more significance to take part in the pathogenesis of various diseases, we conducted experiments to investigate the metabolism of immune cells of ERU cases and healthy controls. To our knowledge, the link between a deviant immunometabolism and the pathogenesis of autoimmune uveitis was not investigated so far. We showed that PBMC of ERU cases had a more active metabolic phenotype in basal state by upregulating both the oxidative phosphorylation and the glycolytic pathway. We further revealed an increased compensatory glycolytic rate of PBMC and CD4+ T cells of ERU cases under mitochondrial stress conditions. These findings are in line with metabolic alterations of immune cells in other autoimmune diseases and basic research, where it was shown that activated immune cells have an increased need of energy and molecule demand for their effector function. We demonstrated a clear difference in the metabolic phenotypes of PBMC and, more specifically, CD4+ T cells of ERU cases and controls. These findings are another important step in understanding the pathogenesis of ERU and figuratively, human autoimmune uveitis.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Leucócitos Mononucleares/metabolismo , Uveíte/imunologia , Animais , Modelos Animais de Doenças , Glicólise , Cavalos , Humanos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Fosforilação Oxidativa , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...